Home
Class 12
MATHS
If y=tan^-1((log(e/x^2))/(log(ex^2)))+ta...

If `y=tan^-1((log(e/x^2))/(log(ex^2)))+tan^-1((3+2logx)/(1-6logx)),` then `(d^2y)/(dx^2)` is (a) `2` (b) `1` (c) `0` (d) `-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((log((e)/(x^(2))))/(log(ex^(2))))+tan^(-1)((3+2log x)/(1-6log x)) then (d^(2)y)/(dx^(2)) is (a) 2(b)1(c)0(d)-1

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is

If y=tan^(-1){((log)_e(e//x^2))/((log)_e(e x^2))}+tan^(-1)((3+2\ (log)_e x)/(1-6\ (log)_e x)) , then (d^2y)/(dx^2)= (a) 2 (b) 1 (c) 0 (d) -1