Home
Class 8
MATHS
x+1/x=2xxsqrt(6)"F i n d"x^3+1/(x^3)...

`x+1/x=2xxsqrt(6)"F i n d"x^3+1/(x^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)),"f i n d"(dy)/(dx)

If d/(dx) {f(x)}=1/(1+x^2) then d/(dx){f(x^3)} is a) (3x)/(1+x^3) b) (3x^2)/(1+x^6) c) (-6x^5)/(1+x^6)^2 d) (-6x^5)/(1+x^6)

If f(x) = x^3 - frac{1}{x^3} then f(x)+f(1/x)= (A)2 x^3 (B) 2/x^3 (C) 0 (D) 1

If f(x)=sqrt(x^2+6x+9) , then f^(prime)(x) is equal to (a) 1 for x<-3 (b) -1 for x<-3 (c) 1 for all x in RR (d) none of these

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

If f(x) = |(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| , then f^(1)(x)=

If f(x) =x + x^(2)/(2!) + x^(3)/(3!) + ……+x^(n)/((n-1)!) , then f(0) + f^(1)(0) + f^(2)(0) +…………+f^(n)(0) is equal to:

If f(x)=sqrt(x^(2)+6x+9), then f'(x) is equal to 1 for x<-3( b) -1 for x<-3(c)1 for all x in R(d) none of these