Home
Class 11
MATHS
x=log t,y=e^(t)+cos t...

x=log t,y=e^(t)+cos t

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

Equations of the tangent and normal to the curve x=e^(t) sin t, y=e^(t) cos t at the point t=0 on it are respectively

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

For the curve x = e^(t) cos t, y = e^(t) sin t the tangent line is parallel to x-axis when t is equal to

The tangent to the curve given by : x=e^(t)cos t, y=e^(t) sin t at t=(pi)/(4) makes with x-axis an angle :

Let U(x,y,z) = xyz, x=e^(-t), y=e^(-t) cos t, z= sin t, t in R . Find (dU)/(dt) .