Home
Class 10
MATHS
" If "cot theta=(15)/(8)," then "((2+2si...

" If "cot theta=(15)/(8)," then "((2+2sin theta)(1-sin theta))/((1+cos theta)(2-2cos theta))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot theta=(15)/(8), then Evaluate ((2+2sin theta)(1-sin theta))/((1+cos theta)(2-2cos theta))

(sin 2 theta)/(1-cos 2 theta)=cot theta

Prove that: (sin2 theta)/(1-cos2 theta)=cot theta

Given cot theta =(7)/(8) , then evaluate (i) ((1+sin theta )( 1-sin theta ))/( (1+cos theta )(1-cos theta )) " "(ii) cot^2 theta

Prove that sin(2theta)/(1-cos2theta)=cot theta

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If cot theta = (7) /(8) evaluate (i) (( 1 + sin theta ) (1 - sin ) theta ) /((1 + cos theta ) ( 1 - cos ) theta ) (ii) cot ^ 2 theta

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)