Home
Class 10
MATHS
-3,-(1)/(2),2,...;t(11)...

-3,-(1)/(2),2,...;t_(11)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A is equal to

Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A is equal to

Which of the following are identity relations on set A={1,2,3} R_(1)={(1,1),(2,2)},R_(2)={(1,1),(2,2),(3,3),(1,3)},R_(3)={(1,1),(2,2),(3,3)}

The vertex of the parabola whose parametric equation is x=t^(2)-t+1,y=t^(2)+t+1;t in R, is (1,1) (b) (2,2)((1)/(2),(1)/(2))(3)(3,3)

If t_(1), t_(2) and t_(3) are distinct, then the points: (t_(1), 2at_(1), at_(1)^(3)), (t_(2), 2at_(2)+at_(2)^(3)) and (t_(3), 2at_(3)+at_(3)^(3)) are colinear if :

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

If t_(1), t_(2) and t_(3) are distinct, the points (t_(1), 2at_(1) +at_(1)^(3)), (t_(2), 2at_(2)+at_(2)^(3)) and (t_(3), 2at_(3)+at_(3)^(3)) are collinear if

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

If A=[(1,-1,2),(2,1,-3),(-2,1,2)],B=[(2,1,0),(2,-3,1),(1,1,-1)] then (A+B)^(T)=