Home
Class 12
MATHS
[" (ii) "A=[[1,-2,2],[0,1,-1],[0,0,1]]" ...

[" (ii) "A=[[1,-2,2],[0,1,-1],[0,0,1]]" and "B=[[1,2,0],[2,3,-1],[0,-1,-2]]" then show that,"(A^(T)B)A" is a diagonal "],[" matrix."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={:[(1,-2,2),(0,1,-1),(0,0,1)]:} and B={:[(1,2,0),(2,3,-1),(0,-1,-2)]:}, then show that, (A'B)A is a diagonal matrix.

if A=[[1,-2,20,1,-10,0,1]]B=[[1,2,02,-10,-1,-2]] then show that (A'B)A is a diagonal matrix.

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

If A=[[1, 0],[ 0, 1]] , B=[[1,0],[0,-1]] and C=[[0, 1],[ 1, 0]] , then show that A^2=B^2=C^2=I_2 .

If A^T=[[3,4],[-1,2],[0,1]] and B=[[-1,2,1],[1,2,3]] then verify that (A-B)^T=A^T-B^T

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Show that (AB)^T=B^TA^T

If A=[[4,3,2],[-1,2,0]],B=[[1,2],[-1,0],[1,-2]] show that matrix AB is non singular.

let A=[[1,0,5],[2,-1,3],[4,1,0]] and B=[[3,2,1],[0,2,1],[3,2,5]] find A',B' and (A+B)' show that (A+B)'=A'+B'

If A=[(1,2,3),(2,0,-1),(0,2,-2)],B=[(1,0,0),(0,-1,0),(-1,0,2)] then 4A-3B=

If A = [(1,0,0),(0,1,0),(a,b,-1)] , show that A^(2) is a unit matrix.