Home
Class 12
MATHS
[" If "2int(0)^(1)tan^(-1)xdx=int(0)^(1)...

[" If "2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx" ,then "int_(0)^(1)tan^(-1)(1-x+x^(2))dx" is equal to "],[[" (a) "(pi)/(2)+log2," (b) "log2],[" (c) "(pi)/(2)-log4," (d) "log4]]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int_(0)^(1)x tan^(-1)xdx=

If 2 int_(0)^(1) tan^(-1) x dx = int_(0)^(1) cot^(-1) (1- x+x^(2))dx , then int_(0)^(1) tan^(-1) (1-x+x^(2))dx is equal to

int_(0)^(1)tan (2x-1)dx=

int_(0)^(1)(cot^(-1)x)/(1+x^(2))dx

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int_(0)^(1)x^(2)tan^(-1)xdx

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=