Home
Class 12
MATHS
[" 15.If "x=ae^(t)(sin t+cos t)" and "],...

[" 15.If "x=ae^(t)(sin t+cos t)" and "],[[y=ae^(t)(sin t-cos t)," then prove that "],[(dy)/(dx),=(x+y)/(x-y)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

x = a (cos t + sin t), y = a (sin t-cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?