Home
Class 12
MATHS
" The value of "lim(x rarr y)(x^(y)-y^(x...

" The value of "lim_(x rarr y)(x^(y)-y^(x))/(x^(x)-y^(y))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of lim_(x rarr y)(sin^(2)x-sin^(2)y)/(x^(2)-y^(2)) equals

lim_(y rarr x)((y^(y)-x^(x))/(y-x))=

The value of lim_(x->y) (x^y-y^x)/(x^x-y^y) is:

The value of lim_(x->y) (x^y-y^x)/(x^x-y^y) is:

the value of lim_(x->y) (x^y-y^x)/(x^x-y^y) is:

Let f(x,y)=sin(2x-y)cos y+cos(2x-y)sin y for all x,y in R. The value of lim_(x rarr0)(1+tan x-x)^((1)/(x^(2)f(x,y))) is equal to

The value of lim_(x rarr1)(y^(3))/(x^(3)-y^(2)-1) as (x,y)rarr(1,0) along the line y=x-1 is

lim_(x rarr y) (tanx-tany)/(x-y)=

lim_(x rarr 0) x^2/y = 0

lim_ (x rarr y) (cos ^ (2) x-cos ^ (2) y) / (x ^ (2) -y ^ (2))