Home
Class 12
MATHS
[[1^(2),2^(2),3^(2)],[2^(2),3^(2),4^(2)]...

[[1^(2),2^(2),3^(2)],[2^(2),3^(2),4^(2)],[3^(2),4^(2),5^(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1^(2),2^(2), 3^(2),4^(2)],[2^(2),3^(2),4^(2),5^(2)],[3^(2),4^(2),5^(2),6^(2)],[4^(2) ,5^(2), 6^(2) ,7^(2)]|

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

Find the rank of the matrix A = [[1^2,2^2,3^2,4^2],[2^2,3^2,4^2,5^2],[3^2,4^2,5^2,6^2],[4^2,5^2,6^2,7^2]]

Evaluate the determinant |(1^2, 2^2, 3^2,4^2),(2^2,3^2,4^2,5^2),(3^2,4^2,5^2,6^2),(4^2,5^2,6^2,7^2)|

The value of |{:(2^(2),2^(3),2^(4)),(2^(3),2^(4),2^(5)),(2^(4),2^(5),2^(6)):}| is

If a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is (4^(2)+5^(2))+3^(2)( ii )(4+5)^(2)+3^(2)41^(2)+3^(2)( iv) (4+5+3)^(2)

The sum of the infinite series,1^(2)-(2^(2))/(5)+(3^(2))/(5^(2))-(4^(2))/(5^(3))+(5^(2))/(5^(4))......is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is