Home
Class 13
MATHS
(1+i)^(4)(1+(1)/(i))^(4)...

(1+i)^(4)(1+(1)/(i))^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Simplify : (1+i^(3))(1+(1)/(i))^(2)(i^(4)+(1)/(i^(4)))

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=(A)1(B)2(C)3(D)4

FInd the value of \ (1+i)^(4) xx (1 + (1)/(i))^(4)

The value of (1 + i)^(4) + (1 -i)^(4) is

((1+i)/(1-i))^4+((1-i)/(1+i))^4=

Simplify: (1)/(i) + (1)/(i^(2)) + (1)/(i^(3)) + (1)/(i^(4))

Simplify: (1)/(i)- (1)/(i^(2)) + (1)/(i^(3)) - (1)/(i^(4))

The value of (1+i)^(4)(1-i)^(4) is