Home
Class 12
MATHS
" If "{x+iy:)^((1)/(x))=a+ib" then prove...

" If "{x+iy:)^((1)/(x))=a+ib" then prove that "4(:a^(2)-b^(b)]=(4)/(n)+(y)/(b)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

(x+iy)^((1)/(3))=(a+ib) then prove that ((x)/(a)+(y)/(b))=4(a^(2)-b^(2))

(x+iy)^((1)/(3))=a+ibthenprovethat(x)/(a)+(y)/(b)=4(a^(2)-b^(2))

If x+iy=(a+ib)/(a-ib) , then prove that x^2+y^2=1

If (x + iy)^((1)/(3)) = a+ ib , then ((x)/(a)) + ((y)/(b)) =

if (x+iy)^(1//3)=a+ib ,show that x/a+y/b=4(a^2-b^2)

If (x+iy)=sqrt((a+ib)/(c+id)) then prove that (x^(2)+y^(2))^(2)=(a^(2)+b^(2))/(c^(2)+d^(2))

If x-iy=sqrt((a-ib)/(c-id)) then prove that x^(2)+y^(2)=(a^(2)+b^(2))/(c^(2)+d^(2))