Home
Class 12
MATHS
[" 14.The sum of the series as "n rarr o...

[" 14.The sum of the series as "n rarr oo],[qquad (sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2)sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+(1)/(49n)],[" is "],[[" (a) "(1)/(14)," (b) "(3)/(28)," (c) "(2)/(3)," (d) "(pi)/(4)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Find the limit, when n to oo, of (sqrtn)/((3 + 4sqrtn)^(2))+ (sqrtn)/(sqrt2 (3 sqrt2+ 4 sqrtn)^(2)) (sqrtn)/(sqrt3 (3sqrt3+ 4 sqrtn )^(2))+...+ (1)/(49n)

lim_(n->oo)sum_(r=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

Lt_(n rarr oo)[(sqrt(n))/(sqrt(n^(3)))+(sqrt(n))/(sqrt((n+4)^(3)))+....+(sqrt(n))/(sqrt([n+4(n-1)]^(3)))]

lim_ (n rarr oo) sum_ (n = 1) ^ (n) (sqrt (n)) / (sqrt (r) (3sqrt (r) + 4sqrt (n)) ^ (2))

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to