Home
Class 11
MATHS
In any triangle ABC, prove that AB^2 + A...

In any triangle ABC, prove that `AB^2 + AC^2 = 2(AD^2 + BD^2)` , where D is the midpoint of BC.

Text Solution

Verified by Experts

Let point B and C lie on the x-axis such that `BD=DC`, where, `D (0,0)` is midpoint of BC.
Let point A be (x,y).

`BD=k`.So, point B is `(-k,0)` and point C is `(k,0)`.
Now, `AB^2+AC^2=(x+k)^2+(y-0)^2+(x-k)^2+(y-0)^2`
`=x^2+k^2+2xk+y^2+x^2k^2-2xk+y^2`
`=2x^2+2y^2+2k^2=2(x^2+y^2+k^2)`
And `2(AD^2+BD^2)=2[(x-0)^2+(y-0)^2+k^2]`
`=2(x^2+y^2+k^2)`
Therefore, `AB^2+AC^2=2(AD^2+BD^2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If D is the middle point of the side BC of the triangle ABC, prove that AB^2 + AC^2 = 2(AD^2 + DC^2) .

In Delta ABC, AD_|_ BC . Prove that AB^(2) - BD^(2) =AC^(2) -CD^(2)

In triangle ABC ,if AB=sqrt(2),AC=sqrt(20) ,B=(3,2,0),C=(0,1,4) and D is the midpoint of BC then AD=

In a Delta ABC , angleB is an acute-angle and AD bot BC Prove that : (i) AC^(2) = AB^(2) + BC^(2) - 2 BC xx BD (ii) AB^(2) + CD^(2) = AC^(2) + BD^(2)

In triangle ABC , seg AD_|_side BC , B-D-C. Prove that AB^2+CD^2=BD^2+AC^2

In figure, AD is a median of a triangle ABC and AM bot BC. Prove that AC ^(2) + AB ^(2) = 2 AD ^(2) + (1)/(2) BC ^(2).

In an equilateral triangle ABC, AD _|_ BC . Prove that : AB^(2) + CD^(2) = 5/4 AC^(2)

In a Delta ABC, /_ B is an acute-angle and AD bot BC . Prove that: AB^2 + CD^2 = AC^2 + BD^2