Home
Class 11
MATHS
If the point P(x, y) be equidistant from...

If the point P(x, y) be equidistant from the points A(a + b, b - a) and B(a-b,a+b) , then prove that `bx=ay`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the point P(x, y) be equidistant from the points A(a+b, a-b) and B(a-b, a+b) then

If the point P(x, y) be equidistant from the points A(a+b, a-b) and B(a-b, a+b) then

If the point P(x, y) is equidistant from the points A(a + b, b - a) and B(a - b, a + b). Prove that bx = ay.

If the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b), then prove that bx=ay.

If the point (x,y) be equidistant from the points ( a+b, b-a) and (a-b, a+b) then prove that bx=ay.

If the point P(x,y) be equidistant from the points A(a+b,a-b) and B(a-b,a+b), then

If the point P (x, y) is equidistant from the points A (a + b, b - a) and B(a -b, a + b). Prove that bx = ay.

If the point P(x, y) is equidistant from the points A(a + b, b-a) and B(a-b, a + b). Prove that bx = ay.

If the point P(3, 4) is equidistant from the points A (a+b, b-a) and B (a-b, a+b) then prove that 3b-4a=0 .

If the point P(3,4) is equidistant from the points A(a+b,b-a and B(a-b,a+b) then prove that 3b-4a=0