Home
Class 12
MATHS
The maximum value of (cos a1)*(cos a2)*....

The maximum value of `(cos a_1)*(cos a_2)*...(cos a_n)`, under the restrictions `0 <=a_1,a_2....,a_n<=pi/2` and `(cot a_1)*(cot a_2)*...(cot a_n)=1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of (cos alpha_1). (cos alpha_2)...........(cos alpha_n), under the restrictions 0 <=alpha_1,alpha_2..........,alpha_n<=pi/2 and (cot alpha_1) (cot alpha_2) ......... (cot a_n)=1 is

The maximum value of (cos alpha_1). (cos alpha_2)...........(cos alpha_n) , under the restrictions 0 <=alpha_1,alpha_2..........,alpha_n<=pi/2 and (cot alpha_1) (cot alpha_2) ......... (cot a_n)=1 is

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

If a_1,a_2,a_3,--- ,a_n are in A.P with common difference d (where d!=0 ) , then the sum of series. sind(cos e ca_1cos e ca_2+cos e ca_2cos e ca_3+ --+cos e ca_(n-1)cos e ca_n) is equal to cota_1-cota_n

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-