Home
Class 12
MATHS
The function f(x)=tanx is discontinuous ...

The function `f(x)=tanx` is discontinuous on the set `{npi; n in Z}` (b) `{2npin in Z}` `{(2n+1)pi/2: n in Z}` (d) `{(npi)/2: n in Z}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=tan x is discontinuous on the set {n pi;n in Z}{(2n+1)(pi)/(2):n in Z}(d){(n pi)/(2):n in Z}

Let tanx-tan^2x >0 and |2s inx| npi,n in Z (b) x > npi-pi/6,n in Z x

The function f(x)=|cos x| is differentiable at x=(2n+1)pi/2,n in Z(b) continuous but not differentiable at x=(2n+1)pi/2,n in Z(c) neither differentiable nor continuous at x=n pi,n in Z(d) none of these

Let tanx-tan^2x >0 and |2sinx| npi,n in Z (b) x > npi-pi/6,n in Z x

The product of matrices A=[[cos^2theta,costheta],[sinthetacostheta,sinthetasin^2theta]] and B=[[cos^2phicosphi,sinphicosphi],[sinphi,sin^2phi]] is a null matrix if theta-phi= (A) 2npi,n in Z (B) (npi)/2, n in Z (C) (2n+1)pi/2, n in Z (D) npi, n in Z

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

Let tanx-tan^2x >0 and |2sinx| x > npi,n in Z (b) x > npi-pi/6,n in Z x

The product of matrices A=[[cos^2theta,sinthetacostheta],[sinthetacostheta,sin^2theta]] and B=[[cos^2phi,sinphicosphi],[sinphicosphi,sin^2phi]] is a null matrix if theta-phi= (A) 2npi,n in Z (B) (npi)/2, n in Z (C) (2n+1)pi/2, n in Z (D) npi, n in Z

The product of matrices A=[[cos^2theta,sinthetacostheta],[sinthetacostheta,sin^2theta]] and B=[[cos^2phi,sinphicosphi],[sinphicosphi,sin^2phi]] is a null matrix if theta-phi= (A) 2npi,n in Z (B) (npi)/2, n in Z (C) (2n+1)pi/2, n in Z (D) npi, n in Z

If the vectors vec aa n d vec b are linearly idependent satisfying (sqrt(3)tantheta+1 )veca+(sqrt(3)s e ctheta-2) vec b=0, then the most general values of theta are a. 2npi-pi/6, n in Z b. 2npi+-(11pi)/6, n in Z c. npi+-pi/6, n in Z d. 2npi+(11pi)/6, n in Z