Home
Class 10
MATHS
3.quad 1+(1)/((1+2))+(1)/((1+2+3))+...+(...

3.quad 1+(1)/((1+2))+(1)/((1+2+3))+...+(1)/((1+2+3+...n))=(2n)/((n+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in Nvdots1+(1)/((1+2))(1)/((1+2+3))+...+(1)/((1+2+3+...n))=(2n)/((n+1))

Prove that by using the principle of mathematical induction for all n in N : 1+ (1)/((1+2))+ (1)/((1+2+3))+ .....+(1)/((1+2+3+n))= (2n)/(n+1)

Prove that by using the principle of mathematical induction for all n in N : 1+ (1)/((1+2))+ (1)/((1+2+3))+ .....+(1)/((1+2+3+n))= (2n)/(n+1)

Prove the following by using the principle of mathematical induction for all n in N 1+(1)/((1+2)) + (1)/((1+2+3)) + …… + (1)/(1+2+3+…..+n) = (2n)/(n+1)

For all nge1 , prove that 1+1/((1+2))+1/((1+2+3))+.......+1/((1+2+3+....+n))=(2n)/((n+1))

For all ninNN , prove by principle of mathematical induction that, 1+(1)/(1+2)+(1)/(1+2+3)+ . . .+(1)/(1+2+3+ . . .+n)=(2n)/(n+1) .

Prove the following by using the principle of mathematical induction for all n in N :- 1+1/((1+2))+1/((1+2+3))+...+1/((1+2+3+...n))=(2n)/((n+1)) .

Using the principle of mathematical induction prove that 1+(1)/(1+2)+(1)/(1+2+3)+(1)/(1+2+3+4)+...+(1)/(1+2+3+...+n)=(2n)/(n+1) for all n in N

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))