Home
Class 14
MATHS
+8quad " If "a^(x)=b^(y)=c^(z)" and "b^(...

+8quad " If "a^(x)=b^(y)=c^(z)" and "b^(2)=ac," then "y" equals : "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z)backslash and quad b^(2)=ac, then y equals a.(xz)/(x+z) b.(xz)/(2(x-z)) c.(xz)/(2(z-x))d .(2xz)/((x+z))

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

IF a^x=b^y=c^z,b^2=ac then 1/x+1/z =