Similar Questions
Explore conceptually related problems
Recommended Questions
- " (i) "int(dx)/(x^(2)-a^(2))=(1)/(2a)log|(x-a)/(x+a)|+C
Text Solution
|
- Evaluate: (i) int((1+logx)^2)/x\ dx (ii) int(sec^2(2tan^(-1)x))/(1+x^2...
Text Solution
|
- Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.
Text Solution
|
- If int (dx)/(a^(2)-x^(2))=(1)/(2a) log |f(x)|+c then f(x) is-
Text Solution
|
- int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C, where
Text Solution
|
- If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C, then
Text Solution
|
- यदि int (dx)/(x ^(2) -x-2)=A log (x+1) +B log (x-2) +c, तो
Text Solution
|
- int (1)/(x-x^(3))dx = log x - (1)/(2) log ( 1-x^(2))+c है।
Text Solution
|
- {:(,"स्तम्भ (A)",,"स्तम्भ(B)"),(1.,inttanxdx,a,(1)/(2a)log.(x-a)/(x+a)...
Text Solution
|