Home
Class 12
MATHS
int(sec^(2)x)/((sec x+tan x)^(9/2))dx" e...

int(sec^(2)x)/((sec x+tan x)^(9/2))dx" equals to "

Promotional Banner

Similar Questions

Explore conceptually related problems

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

The integral int (sec^(2) x)/((sec x+tan x)^(9//2))dx equals : (for some arbitrary constant k)

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

int(sec x+tan x)^(2)dx

The integral (sec^(2)x)/((sec x+tan x)^((9)/(2))) is equal to

int(sec x)/((sec x+tan x)^(2))dx

int(sec x)/(sec x+tan x)dx=

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(log(tan x)^(tan x)dx)