Home
Class 12
MATHS
The function u=e^x sinx , v=e^x cosx sat...

The function `u=e^x sinx , v=e^x cosx` satisfy the equation (a) `v (du)/(dx)-u(du)/(dx)=u^2+v^2` (b) `(d^2u)/(dx^2)=2v` (c) `d^2v)/(dx^2)=-2u` (d) `(du)/(dx)+(dv)/(dx)=2v`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

The function u=e^x sin x ; v=e^x cos x satisfy the equation a. v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2v)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

The function u=e^x sinx ; v=e^x cos x satisfy the equation v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

The function u=e^xsinx and v=e^xcosx . The value of v(du)/(dx)-u(dv)/(dx) is-

The function u=e^xsinx and v=e^xcosx . The value of (d^2u)/(dx^2) is-

The function u=e^xsinx and v=e^xcosx . The value of (d^2v)/(dx^2) is-

If u=e^(ax)sinbx and v=e^(ax)cosbx . then what is u(du)/(dx)+v(dv)/(dx) equal to ?

int(u(v(du)/(dx)-u(dv)/(dx)))/(v^(3))dx=

Prove that (d)/(dx)uv=u(dv)/(dx)+v(du)/(dx) .

If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=