Home
Class 11
MATHS
Let A,B,C,D,E represent vertices of a re...

Let `A,B,C,D,E` represent vertices of a regular pentagon `ABCDE`. Given the position vector of these vertices be `vec a, vec a+vec b,vec b,lambdavec a` and `lambdavec b` respectively. If the area of the pentagon `ABCDE` is `k|vec a timesvec b|` then `k` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vector of three points are 2vec a-vec b+3vec c,vec a-2vec b+lambdavec c and muvec a-5vec b where vec a,vec b,vec c are noncoplanar vectors.The points are collinear when

If the components of vec(b) along and perpendicular to vec(a) are lambdavec(a ) and vec(b)-lambdavec(a) respectively, what is lambda equal to ?

If the vectors vec a+vec b+vec c,vec a+lambdavec b+2vec c,-vec a+vec b+vec c are linearly dependent then lambda

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

If vec a,vec b are two non-collinear vectors,prove that the points with position vectors vec a+vec b,vec a-vec b and vec a+lambdavec b are collinear for all real values of lambda

The position vector of A,B are vec a and vec b respectively.The position vector of C is (5(vec a)/(3))-vec b then

underset then If vec a,vec b,vec c,vec d are the vertices of a square

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

The points with position vectors vec a-2vec b+3vec c,2vec a+lambdavec b-4vec c,-7vec b+10vec c will be collinear if lambda=...cdots