Home
Class 12
MATHS
Let a(n)(n>=1) be the value of x for whi...

Let `a_(n)(n>=1)` be the value of x for which `int_(x)^(2x)e^(-t^n)dt(x>0)` is maximum.If `L=lim_(n rarr oo)ln(a_(n))`, then the value of `e^(-L)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(x rarr oo){x-x^(2)log_(e)(1+(1)/(x))}, then the value of 8L is

The value of lim_(x rarr oo)(x^(n))/(e^(x))

The value of 'n' for which lim_(x rarr1)(e^(x-1)-x)/((x-1)^(n)) exists is/ are

If a_(1)=1 and a_(n+1)=(4+3a_(0))/(3+2a_(n)),n>=1, and if lim_(n rarr oo)a_(n)=a then find the value of a.

the value of lim_(x rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)(n)/(2^(n))int_(0)^(2)x^(n)dx equals

Let: a_(n)=int_(0)^((pi)/(2))(1-sin t)^(n)sin2tdt Then find the value of lim_(n rarr oo)na_(n)

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

The value of lim_(n rarr oo) n[log(n+1)-logn] is