Home
Class 12
MATHS
If f:R rarr R be a function such that f(...

If `f:R rarr R` be a function such that `f(x+2y)=f(x)+f(2y)+4xy, AA x,y` and `f(2) = 4` then, `f(1)-f(0)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function such that f(x+y)=f(x)+f(y),AA x,y in R

If f:R rarr R be a differentiable function such that f(x+2y)=f(x)+f(2y)+4xy, AA x,y in R , f(2)=10 , then f(3)=?

If f:R rarr R is continuous such that f(x+y)=f(x)*f(y)AA x,y in R and f(1)=2 then f(100)=

Let f(x+y)+f(x-y)=2f(x)f(y)AA x,y in R and f(0)=k, then

Let f:R rarr R^(*) be a derivable function such that f(x+y)=3f(x)f(y),AA x,y in R with f(1)=(2)/(3) ,then sum_(r=1)^(oo)(1)/(f(r)) is equal to

Let f:R rarr R be a function such that |f(x)-f(y)|<=6|x-y|^(2) for all x,y in R. if f(3)=6 then f(6) equals:

Let f:R rarr R be a differential function satisfy f(x)=f(x-y)f(y)AA x,y in R and f'(0)=a,f'(2)=b then f'(-2)=

Let f:R rarr R be a function given by f(x+y)=f(x)f(y) for all x,y in R .If f'(0)=2 then f(x) is equal to

If f(x+y)=f(xy) AA x, y epsilon R, and f (2013) =2013 , then f(-2013) equals