Home
Class 12
MATHS
(1)/(2+omega)+(1)/(1+2 omega)=(1)/(1+ome...

`(1)/(2+omega)+(1)/(1+2 omega)=(1)/(1+omega)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(1+2 omega)+(1)/(2+omega)-(1)/(1+omega)=0

(1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega)= 1. omega\*2. omega^(2) \* 3. a^(2)+b^(2) \*4. 0

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is

If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=

If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=

If omega and omega^(2) are non real cube root of unity and (1)/(a+omega)+(1)/(b+omega^(7))+(1)/(c+omega^(13))=2 omega^(20) and (1)/(a+omega)+(1)/(b+omega^(8))+(1)/(c+omega^(14))=2 omega^(2) ,then which is/are true-

If w be an imaginary cube root of unity,show that :(1)/(1+2w)+(1)/(2+omega)-(1)/(1+omega)=0

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega=(-1+sqrt(-3))/(2) , then (1)/(1+omega)+(1)/(1+omega^(2))= (a) 0 (b) - 1 (c) 1 (d) 2w