Home
Class 12
MATHS
" If "1=int(x^(3)-x)/(x^(4)-9)dx" ,then ...

" If "1=int(x^(3)-x)/(x^(4)-9)dx" ,then "1" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(2)-1)/(x^(3)-3x-9)dx

int_(1)^(2)(3x)/(9x^(2)-1)dx

int(x^(3)-x)/(1+x^(6))dx is equal to

int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(x^(5))/(1-x^(9))dx is equal to

int((x^(4)-x)^(1//4))/(x^(5))dx is equal to

int x^(-7)(1+x^(4))^(-1/2)dx" is equal to "

int(x^(3)-1)/((x^(4)+1)(x+1))dx is

int (x^(1/3))/((1+x^(4/3))^(9))dx