Home
Class 11
MATHS
Let f(x)=sin^(-1)x|sin^(-1)x|+sin^(-1)|x...

Let `f(x)=sin^(-1)x|sin^(-1)x|+sin^(-1)|x|`
The range of f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| The range of f(x) is

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| If the equation f(x) = k has two solutions, then true set of values of k is

Consider a real - valued function f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x) The range of f (x) is

Range of f(x)=sin^(-1)x*sin x

Range of f(x)=sin^(-1)x+sec^(-1)x is

f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| no.of solution of equation f(x)=x is

If f(x)=(sin^(-1)x+tan^(-1)x)/(pi)+2sqrt(x), then the range of f(x) is

f(x)= sin^(-1)((x)/(1+|x|))

Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)x

If f(x)=(sin^(2)x+4sin x+5)/(2sin^(2)x+8sin x+8) then range of f(x) is