Home
Class 11
MATHS
Let f : R rarr[-1,oo] and f(x)= ln([|sin...

Let `f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|])` (where[.] is greatest integer function), then -

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr[-1,oo] and f(x)=ln([sin2x|+|cos2x|]) (where[.] is greatest integer function),then- -

Let f(x)=|x|+[x-1], where [ . ] is greatest integer function , then f(x) is

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)