Home
Class 11
MATHS
cos66^(0)+sin84^(0)=(sqrt(15)+sqrt(3))/(...

`cos66^(0)+sin84^(0)=(sqrt(15)+sqrt(3))/(K)` then K=

Promotional Banner

Similar Questions

Explore conceptually related problems

cos66^(@)+sin84^(@)=

cos66^(@)+sin84^(@)=

cos66^(@)+sin84^(@)=(sqrt(15)+sqrt(3))/(k) .Then k=

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

4(sin24^(0)+cos6^(@))=sqrt(3)+sqrt(15)

If int_(0)^(20)sqrt(1-cos pi x)dx=(10k sqrt(2))/(pi), then k is

int sqrt(cos x(cos^(3) x + sin 2x))dx = (1- sinx)/(k)sqrt(1+2 sin x-sin^(2)x) + sin^(-1)((1-sinx)/(sqrt(2)))+c then 3k =

If cos (A+B) =0 and sin (A-B) = (sqrt(3))/(2) then calculate the value of A.

If 1+cos56^(0)+cos58^(0)-cos66^(0)=k cos28^(0)cos29^(@)sin33^(@) then the value of k is

sin57^(@)cos3^(@)=(sqrt(x)+sqrt(y)+1)/(z) , and (x+y+z)=k^(2),k in R then the value of k=