Home
Class 11
MATHS
If f(x)=x^2+2bx+2c^2, g(x)=-x^2-2cx+b^2 ...

If `f(x)=x^2+2bx+2c^2`, `g(x)=-x^2-2cx+b^2` and `minf(x)>maxg(x)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)+2bx+2c^(2)g(x)=-x^(2)-2cx+b^(2) and min f(x)>max g(x) then

If f(x)=x^(2)+2bx+2c^(2)and g(x)=-x^(2)-2cx+b^(2), such that minf(x)gtmaxg(x), then the relation between b and c, is

If (x)=x^(2)+2bx+2c^(2) and g(x)=-x^(2)-2cx+b^(2) such that min f(x)>max g(x), then the relation between a and c is (1) Non real value of b and c(2)0 |b|sqrt(2)

If non-zero real number b and c are such that min f(x) gt max g(x) where f(x) =x^(2) + 2bx + 2c^(2) and g(x) = -x^(2) - 2cx + b^(2) (x in R) " then " |(c )/(b)| lies in the interval

If: f(x)=bx^2+cx+d and: f(x+1)-f(x)=8x+3, then:

If f(x) =ax^(2) +bx + c, g(x)= -ax^(2) + bx +c " where " ac ne 0 " then " f(x).g(x)=0 has

If g(x)=x^(2)+x-2 and (1)/(2)g(f(x))=2x^(2)-5x+2, then f(x) is

If g(x)=x^2+2x+1 and g(f(x))=4(x^2+2x+1) then f(x) can be (A) 2x+1 (B) 2x-1 (C) 2x+3 (D) 2x-3

If f(x)=(x^(2)+3x+2)(x^(2)-7x+a) and g(x)=(x^(2)-x-12)(x^(2)+5x+b) , then the value of a and b , if (x+1)(x-4) is H.C.F. of f(x) and g(x) is