Home
Class 12
MATHS
If alpha,beta are the roots of x^2+p x+q...

If `alpha,beta` are the roots of `x^2+p x+q=0a n dgamma,delta` are the roots of `x^2+p x+r=0,` then `((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))=` `1` b. `q` c. `r` d. `q+r`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^(2)+px+q=0and gamma,delta are the roots of x^(2)+px+r=0, then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))= a.1b.q c.r d.q+r

If alpha,beta are the roots of x^(2)+ax-b=0 and gamma,delta are the roots of x^(2)+ax+b=0 then (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)=

if alpha,beta are the roots of quadratic equation x^(2)+px+q=0 then gamma,delta are the roots of x^(2)+px-r=0, then (alpha-gamma)(alpha-delta)

If alpha,beta are the roots of the equation x^(2)+px+1=0 gamma,delta the roots of the equation x^(2)+qx+1=0 then (alpha-gamma)(alpha+delta)(beta-gamma)(beta+delta)=

if alpha,beta the roots x^(2)+x+2=0 and gamma,delta the roots of x^(2)+3x+4=0 then find the value of (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)

If alpha,beta are the roots of x^(2)+px+q=0and gamma,delta are the roots of x^(2)+rx+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p,q,r, ands.Deduce the condition that the equation has a common root.

If alpha and beta are the roots of quadratic equation x^(2)+px+q=0 and gamma and delta are the roots of x^(2)+px-r=0 then (alpha-gamma)(alpha-delta)