Home
Class 11
MATHS
If t is a real number, and a vector vec ...

If t is a real number, and a vector `vec r` satisfies the equation `vec r times(hat i-2hat j+hat k)=hat i-hat k`, then `vec r` can be equal to-
(A) `hat j+t(hat i-2hat j+hat k)`
(B) `hat i-hat j+hat k`
(C) `2hat i-3hat j+2hat k`
(D) `hat i+hat k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec A=2hat i+hat j+hat k and vec B=7hat i+3hat j+hat k Find vec B timesvecA A) 19hat i-38hat j+16hat k B) 2hat i-5hat j+hat k C)- 14hat i+32hat j+hat k D) hat i+hat j+5hat k

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

If the vectors hat i-hat j,hat j+hat k and vec a form a triangle,then vec a may be a.-hat k-hat k b.hat i-2hat j-hat k c.2hat i+hat j+hat k d.hat i+hat k

A point on the line hat r=2hat i+3hat j+4hat k+t(hat i+hat j+hat k) is

vec a=(hat i+hat j+hat k),vec a*vec b=1 and vec a xxvec b=hat j-hat k, then hat b is hat i-hat j+hat k b.2hat j-hat k c.hat i d.2hat i

For any vector vec r ,prove that vec r=(vec r*hat i)hat i+(vec r*hat j)hat j+(vec r*hat k)hat k

Equation of the plane containing the lines vec r=(hat i-2hat j+hat k)+t(hat i+2hat j-hat k)vec r=(hat i+2hat j-hat k)+s(hat i+hat j+3hat k) is

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Find [vec avec bvec c], when (ii) vec a=2hat i-3hat j,vec b=hat i+hat j-hat k and vec c=3hat i-hat k(i)vec a=hat i-2hat j+3hat k,vec b=2hat i+hat j-hat k and vec c=hat j+hat k

Find vec adot vec b , when (i) vec a= hat i-2 hat j+ hat k and vec b=4 hat i-4 hat j+7 hat k (ii) vec a= hat j+2hat k and vec b = 2 hat i+ hat k (iii) vec a= hat j-hat k andvec b= 2 hat i+3 hat j-2 hat k