Home
Class 11
MATHS
If |z|-z=3-2i, then z equals (A) 7/6+i, ...

If `|z|-z=3-2i,` then z equals (A) `7/6+i,` (B) `-7/6+2i,` (C) `-5/6+2i,` (D) `5/6+i`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z+sqrt(2)|z+1|+i=0 , then z= (A) 2+i (B) 2-i (C) -2-i (D) -2+i

If |z+4i|=min{|z+3i|,|z+5i|, then z satisfies Im z=-(7)/(2)

If z=2-i sqrt(3) then z^(4)-4z^(2)+8z+35 is (A) 6(B)0(C)1 (D) 2

If |z-i|<1 then |z+12-6i| is always less than

Let z_1=6+i and z_2=4-3i . If z is a complex number such thar arg ((z-z_1)/(z_2-z))= pi/2 then (A) |z-(5-i)=sqrt(5) (B) |z-(5+i)=sqrt(5) (C) |z-(5-i)|=5 (D) |z-(5+i)|=5

6i^(50) + 5i^(33) - 2i^(15) + 6i^(48) = 7i .

A particle P starts from the point z_0=1+2i , where i=sqrt(-1) . It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1dot From z_1 the particle moves sqrt(2) units in the direction of the vector hat i+ hat j and then it moves through an angle pi/2 in anticlockwise direction on a circle with centre at origin, to reach a point z_2dot The point z_2 is given by (a)6+7i (b) -7+6i (c)7+6i (d) -6+7i

If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)

If z is a complex number such that |z|=4 and arg(z)=(5 pi)/(6), then z is equal to -2sqrt(3)+2i b.2sqrt(3)+i c.2sqrt(3)-2i d.-sqrt(3)+i

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is