Home
Class 11
MATHS
" The number of integral values of "'x'"...

`" The number of integral values of "'x'" satisfying the inequality "(1)/((x^(2)+x))<=(1)/((2x^(2)+2x+3))" is/are "`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying the inequality ((3)/(4))^(6x+10-x^(2))<(27)/(64)is_(-)-...-

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

The number of integral values of x satisfying the inequation x^(2)-|x|-6<=0 is

The number of integral values of x satisfying |x^2-1|leq3 is

Number of integral values of x satisfying the inequality (x^(2)(x+1)(x^(2)-1)(x+2))/(x^(2)-2x-3)<=0

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)le10^(12) are alpha then

Sum of integral values of x satisfying the inequality 3((5)/(2))log_(3)(12-3x)

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

If x=(4)/(9) then number of distinct integral values of x satisfying the inequality log_(a)(x^(2)-x+2)>log_(a)(-x^(2)+2x+3) ,is