Home
Class 11
MATHS
If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e...

If `int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c`, (where c is constant of integration) then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

if int x^(5)e^(-x^(2))dx=g(x)e^(-x^(2))+c where c is a constant of integration then g(-1) is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If int e^(2x)(cos x+7sin x)dx=e^(2x)g(x)+c where c is constant of integration then g(0)+g((pi)/(2))=

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to