Home
Class 11
MATHS
sum(n=9)^(575)((1)/(n sqrt(n+1)+(n+1)sqr...

`sum_(n=9)^(575)((1)/(n sqrt(n+1)+(n+1)sqrt(n)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

Suppose sum_(n=1)^(oo)(1)/((n+2)sqrt(n)+nsqrt(n+2))=(sqrt(b)+sqrt(c))/(sqrt(a)) where a,b,c in N and A = ((sqrt(a),b),(c,sqrt(a))) then (det(A))/(bc) is equal to ____

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

If S=sum_(n=1)^(9999)(1)/((sqrtn+sqrt(n+1))(root4(n)+root4(n+1))) , then the value of S is equal to

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

Let S=sum_(n=1)^(9999)(1)/((sqrt(n+1))(root(4)(n)+root(4)(n+1))), then S equals

The value of sum_(k=2)^(oo){Lt_(n rarr oo)sum_(r=1)^(n)((sqrt(n))/(sqrt(r)(k sqrt(n)-sqrt(r))^(2))}]}