Home
Class 11
MATHS
Let f(x)=(ax^(2)+2(a+1)x+9a+4)/(x^(2)-8x...

Let `f(x)=(ax^(2)+2(a+1)x+9a+4)/(x^(2)-8x+32)` and `g(x)=x-x^(2)-1` If f(x) is less than `M+(3)/(4)` for all `x in R` where M is the maximum value of g(x) then possible set of values of a lies in

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(mx^2+3x+4)/(x^(2)+3x+4) , m in R . If f(x) lt 5 for all x in R then the possible set of values of m is :

Let f(x)=min{4x+1,x+2,-2x+4}. then the maximum value of f(x) is

Let f(x)=x^(2)+2px+2q^(2) and g(x)=-x^(2)-2px+p^(2) (where q ne0 ). If x in R and the minimum value of f(x) is equal to the maximum value of g(x) , then the value of (p^(2))/(q^(2)) is equal to

Let f(x)=x^(2)-ax+3a-4 and g(a) be the least value of f(x) then the greatest value of g(a)

Let f(x)=ax+b and g(x)=x+2,a,b in{1,2,3...,8} If (fog)(x)=(gof)(x) for all x then write the number of different possible values of a+b?

Let f(x) = e^(x) - x and g (x) = x^(2) - x, AA x in R . Then the set of all x in R where the function h(x) = (f o g) (x) in increasing is :

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)),where h(x) is defined for all x in R. If g'(2) = e^4 and h' (2)=1 then absolute value of sum of all possible values of h(2), is

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =