Home
Class 11
MATHS
Consider the function y=f(x) satisfying ...

Consider the function `y=f(x)` satisfying the condition `f(x+1/x)=x^2+1//x^2(x!=0)dot` Then the domain of `f(x)i sR` domain of `f(x)i sR-(-2,2)` range of `f(x)i s[-2,oo]` range of `f(x)i s(2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

Consider the real-valued function satisfying 2f(sin x)+f(cos x)=x .then the (a)domain of f(x) is R (b)domain of f(x)is[-1,1] (c)range of f(x) is [-(2 pi)/(3),(pi)/(3)]( d)range of f(x) is R

Find the domain and range of f(x)(1)/(2-sin3x).

Consider the function f(x)=(.^(x+1)C_(2x-8))(.^(2x-8)C_(x+1)) Statement-1: Domain of f(x) is singleton. Statement 2: Range of f(x) is singleton.

Consider the function f(x)=(.^(x+1)C_(2x-8))(*^(2x-8)C_(x+1)) statement -1: Domain of f(x) is singleton.Statement -2: Range of f(x) is singleton.

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is