Home
Class 11
MATHS
The sum of solutions of the equation log...

The sum of solutions of the equation `log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all solutions of the equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x+log_(3)x is

The set of all solutions of the equation log_(3)x log_(4)x log_(3)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x log_(3)x is

The number of solutions of equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(5)x

Find the square of the sum of the roots of the equation log_(3)x.log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x. log_(5)x+log_(5)x.log_(3)x

log_(4)(log_(2)x)+log_(2)(log_(4)x)=2

log_(4)(log_(2)x)+log_(2)(log_(4)x)=2

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

How many values of (xgt1) satisfy the following equation: log_(2)xxlog_(4)xxlog_(6)x=log_(2)x.log_(4)x+log_(2)x.log_(6)x+log_(4)x.log_(6)x ?

The sum of solution of the equation (log_(27)x^(3))^(2)=log_(27)x^(6) is equal to