Home
Class 11
MATHS
Let, f: X->y,f(x) = sin x + cos x + 2sqr...

Let, `f: X->y,f(x) = sin x + cos x + 2sqrt2` be invertible. Then which `X->Y` is not possible? a) `[pi/4,(5pi)/4] ->[sqrt(2),3sqrt(2)]` b) `[-(3pi)/4,pi/4]->[sqrt(2),3sqrt(2)]` c) `[-(3pi)/4,(3pi)/4]->[sqrt(2),3sqrt(2)]` d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:X rarr yf(x)=s in x+cos x+2sqrt(2) be invertible.Then which X rarr Y is not possible? [(pi)/(4),(5 pi)/(4)]rarr[sqrt(2,3)sqrt(2)][-(3 pi)/(4),(pi)/(4)]rarr[sqrt(2,3)sqrt(2)][-(3 pi)/(4),(3 pi)/(4)]rarr[sqrt(2,3)sqrt(2)] none of these

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

5sin x+4cos x=3rArr4sin x-5cos x= a) 4 b) 4sqrt(2) c) 3sqrt(2) d) sqrt(2)

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x

The value of sin^(-1)(cot(sin^(-1)((2-sqrt(3))/(4)+(cos^(-1)(sqrt(12)))/(4)+sec^(-1)sqrt(2))))(a)0( b) (pi)/(2)( c) (pi)/(3)( d) none of these

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

int_(0)^(pi//2)((pi)/(4)-x)/(sqrt(sin x)+ sqrt(cos x))dx=

If (dy)/(dx) +y sec x=tan x," then (sqrt(2) +1) y((pi)/(4)) - y(0)=, (A) sqrt(2) - (pi)/(4) (B) sqrt(2) + (pi)/(4) (C) sqrt(2) - (pi)/(2) (D) sqrt(2) + (pi)/(2)