Home
Class 11
MATHS
If x^2+y^2=1 and x != -1 then (1+y+ix)/(...

If `x^2+y^2=1` and `x != -1` then `(1+y+ix)/(1+y-ix)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) = 1 and x ne -1 then (1+y+ix)/(1+y-ix) equals

If |[ x y 1 1 ]|=2 and |[ x 3 y 2 ]|=1 then

If (x_(1) , y_(1)) " and " (x_(2), y_(2)) are ends of a focal chord of parabola 3y^(2) = 4x , " then " x_(1) x_(2) + y_(1) y_(2) =

If (x_(1),y_(1)),(x_(2),y_(2)) are the extremities of a focal chord of the parabola y^(2)=16x then 4x_(1)x_(2)+y_(1)y_(2)=

If y=(x^(2))/(1-x)," then "(1-x)y_(2)=

Solve for x,y. x^2 + y(x+1) = 17 and y^2 + x(y+1) = 13

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)=a-ibquad if a^(2)+b^(2)=1 ,when a,b are real.

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)=a-ib if a^(2)+b^(2)=1, wherea,breal.

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .