Home
Class 11
MATHS
If alpha,beta are the roots of x^(2)+x+1...

If `alpha,beta` are the roots of `x^(2)+x+1=0`, and `s_(n)=alpha^(n)+beta^(n)`, then `|[3,1+S_(1),1+S_(2)],[1+S_(1),1+S_(2),1+S_(3)],[1+S_(2),1+S_(3),1+S_(4)]|=?`

Answer

Step by step text solution for If alpha,beta are the roots of x^(2)+x+1=0, and s_(n)=alpha^(n)+beta^(n), then |[3,1+S_(1),1+S_(2)],[1+S_(1),1+S_(2),1+S_(3)],[1+S_(2),1+S_(3),1+S_(4)]|=? by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=

If alpha, beta are the roots of the equation ax^(2) +bx+c=0 and S_(n) =alpha^(n) +beta^(n)" then "a S_(n+1) +b S_(n)+ c S_(n-1)=

Knowledge Check

  • If alpha, beta are roots of 375x^(2)-25x-2=0 and s_(n)=alpha^(n)+beta^(n) , then lim_(n to oo) sum_(r=1)^(n)S_(r) is

    A
    `(7)/(116)`
    B
    `(1)/(12)`
    C
    `(29)/(358)`
    D
    none of these
  • If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

    A
    `0`
    B
    `a+b+c`
    C
    `(a+b+c)n`
    D
    `n^(2)abc`
  • If alpha,beta are roots of 375x^2 - 25x -2 = 0 and s_n = alpha^n + beta^n , then lim_(n to oo)sum_(r = 1)^n S_r is

    A
    `7/116`
    B
    `1/12`
    C
    `29/358`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta are the roots of the equation, x^(2)-x-1=0 and S_(n)=2023 alpha^(n)+2024 beta^(n) ,then 2S_(12)=S_(11)+S_(10)

    [ Let alpha,beta be the roots of x^(2)-2x+5=0 and let S_(n)=alpha^(n)+beta^(n) for ngt=1, then the value of |[3,1+S_(2),1+S_(3)1+S_(2),1+S_(4),1+S_(5)1+S_(3),1+S_(5),1+S_(6)]| is equal to [ (1) -12544, (2) 12544 (3) -4704, (4) -4712]]

    alpha and beta are the roots of x^2-x-1=0 and S_n=2023 alpha^n 2024 beta^n then

    If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

    If alpha and beta are the roots of ax^(2)+bx+c=0andS_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=0 and hence find S_(5)