Home
Class 11
MATHS
cos(A+B)+sin C=sin(A+B)-cos C...

`cos(A+B)+sin C=sin(A+B)-cos C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

if A + B + C = pi then (cos A) / (sin B sin C) + (cos B) / (sin C sin A) + (cos C) / (sin A sin B) =

(cos A)/(sin B sin C)+(cos B)/(sin C sin A)+(cos C)/(sin A sin B)=2

What is the value of sin (B - C) cos (A- D) + sin (A-B) cos (C -D) + sin (C- A) cos (B - D) ? sin (B - C) cos (A- D) + sin (A-B) cos (C -D) + sin (C- A) cos (B - D) का मान क्या है?

In any triangle ABC,sin^(2)A-sin^(2)B+sin^(2)C is always equal to (A) 2sin A sin B cos C(B)2sin A cos B sin C(C)2sin A cos B cos C(D)2sin A sin B sin C

If A, B, C, D are four angles then sin (AB) .cos (A + B) + sin (BC) .cos (B + C) + sin (CD) .cos (C + D) + sin ( DA) .cos (D + A) =

cos2B + cos2A-cos2C = 1-4sin A sin B cos C

Prove that: ("sin"(A-B))/(cos A cosB)+(sin(B-C))/(cos B cos C)+("sin"(C-A))/(cos C cos A)=0