Home
Class 11
MATHS
[3x-4]=5 ,where [.] is a greatest intege...

`[3x-4]=5` ,where [.] is a greatest integer function.Then x

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

Let f(x)=[x^3 - 3], where [.] is the greatest integer function, then the number of points in the interval (1,2) where function is discontinuous is (A) 4 (B) 5 (C) 6 (D) 7

Let us consider a function f(x)=sin[x] where [x] denotes the greatest integer function.Then

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

If f(x) is defined for x in [-3,5] ,then the domain of f([|x|]) (where [.] is the greatest integer function) is

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

Solve in R: x^2+ 2[x] = 3x where [.] denotes greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The domain of the function f(x)=sin^(-1)[2x^(2)-3], where [.] is greatest integer function,is