Home
Class 12
MATHS
If f(1)=2, f\'(x)=f(x) and h(x)=fof(x) t...

If `f(1)=2, f\'(x)=f(x)` and `h(x)=fof(x)` then `h\(1)` is equal to (A) `4e` (B) `2e^2` (C) `4e^2` (D) `e^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=2,f backslash(x)=f(x) and h(x)=fof(x) then h backslash(1) is equal to (A)4e (B) 2e^(2)(C)4e^(2)(D)e^(2)

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

If int f' (x) e^(x^(2)) dx = (x-1)e^(x^(2)) + c , then f (x) is

If f(x)={x^2, for xgeq1x ,for x<0 ,t h e n fof(x) is given by

If int f'(x) e^(x^(2))dx = (x-1)e^(x^(2))+c then f (x) is . . . . .

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

f(x)=(e^(2x)-1)/(e^(2x)+1) is

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to