Home
Class 11
MATHS
log((1)/(5))(2x^(2)+7x+7)=0...

`log_((1)/(5))(2x^(2)+7x+7)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_((1)/(2))(x^(2)-5x+7)>0, then exhaustive range of values of x is

Find the domain of the function : f(x)=(1)/(sqrt(log_((1)/(2))(x^(2)-7x+13)))

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

The number of solutions of the equation log _((x + 1)) ( 2x ^(2) + 7x + 5) + log _( ( 2x + 5)) (x +1) ^( 2) -4 =0, x gt 0, is ______.

For x>2,quad if log_((1)/(7))(3^(x)+2x-5)=x(1-log_(7)21) then x=

Solve "log"_(1//2)(x^2-5x+7)ge0

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

The range of the function f(x)=log_((1)/(2))log_(5)(sqrt(2x^(2)+4x+7)) is

The real roots of the equation : 7 log_(7) (x^(2) - 4x + 5) = x - 1 are :