Home
Class 12
MATHS
tan(2tan^(- 1)((sqrt(5)-1)/2))=...

`tan(2tan^(- 1)((sqrt(5)-1)/2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan[2 tan^(-1)((sqrt(5)-1)/(2))]=2

tan[2"Tan"^(-1)(sqrt(5)-1)/2]=

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

cos^(-1)x = tan^(-1)x , then: a. x^2=((sqrt(5)-1)/2) b. x^2=((sqrt(5)+1)/2) c. sin(cos^(-1)x)=((sqrt(5)-1)/2) d. tan(cos^(-1)x)=((sqrt(5)-1)/2)

The value of tan^(-1)((1)/(sqrt(2)))-tan^(-1)((sqrt(5-2sqrt(6)))/(1+sqrt(6))) is equal to

tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2) =

The value of tan(1/2 cos^(-1)(2/(sqrt(5)))) is

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))