Home
Class 11
MATHS
If in a triangle ABC, sin^4A+sin^4B+sin^...

If in a triangle ABC, `sin^4A+sin^4B+sin^4C=sin^2B sin^2C+2 sin^2C sin^2A+2sin^2A sin^2B`, show that, one of the angles of the triangle is `30^@` or `150^@`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC,sin^(4)A+sin^(4)B+sin^(4)C=sin^(2)B sin^(2)C+2sin^(2)C sin^(2)A+2sin^(2)A sin^(2)B ,show that,one of the angles of the triangle is 30^(@) or 150^(@)

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If in triangleABC ,sin^4A+sin^4B+sin^4C=sin^2Bsin^2C+2sin^2Csin^2A+2sin^2Asin^2B then show that angle A is either 30^@ or 150^@

In triangle ABC if sin^2B+sin^2C=sin^2A then

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

Show that in a triangle ABC, a^2(sin^2B-sin^2C)+b^2(sin^2C-sin^2A)+c^2(sin^2A-sin^2B)=0

If in a triangle ABC, sin^2A+sin^2B+sin^2C=2 then the triangle is always