Home
Class 12
MATHS
tan^(-1)(-1)+cos^(-1)(-(1)/(sqrt(2)))...

`tan^(-1)(-1)+cos^(-1)(-(1)/(sqrt(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)(1)+cos^(-1)(-(1)/(sqrt2)) is:

Find the values of the followings : tan^(-1)(1)+cos^(-1)(-1/sqrt2)

tan ^(-1)(1) + cos^(-1)(1/sqrt2) + sin^(-1)(1/2)

Solve the following equations : tan^(-1)(1)+cos^(-1)(1/sqrt2)=sin^(-1)x

Evaluate the value of tan^(-1) (-sqrt(3)) +cos^(-1) (1/(sqrt(2))) + sin^(-1) (-(sqrt(3))/2)

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

a=sin^(-1)(-(sqrt(2))/(2))+cos^(-1)(-(1)/(2)) and b=tan^(-1)(-sqrt(3))-cot^(-1)(-(1)/(sqrt(3))) ,then

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to